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Large explosive volcanic eruptions

Aso volcano today

Downloaded from https://en.wikipedia.org/wiki/Mount_Aso
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Large explosive volcanic eruptions

Tephra thicknesses for Aso-4, 109 sites
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Large explosive volcanic eruptions

Estimated isopach map
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Outline

I The deposition of tephra fall on land and sea is complex, the
archive is prone to disturbances, and the measurements are
sparse and inaccurate.

I Current practice for volume estimation involves a high degree
of expert judgement, being based on a small number of
hand-drawn isopachs (= contours of equal thickness).

The interplay of measurement and judgement is not
transparent, and the approach is not amenable to a formal
assessment of uncertainty.

I We use modern flexible-fitting methods from Statistics and
Machine Learning, we represent judgements using
pseudo-measurements, and we quantify variability using a
bootstrap 95% CI.
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A spatial model for thickness

We insist from the outset that thickness z is non-negative:

BC(z(s);λ) = BC(0;λ) +
k∑

j=1

βjφj(s) + r(s), s ∈ S ⊂ R2,

where φj ≥ 0 with compact support, βj ≥ 0, and ‘ BC’ is the
Box-Cox transformation,

BC(z ;λ) =

log(z + 1) λ = 0

(z+1)λ−1
λ λ 6= 0.

I This model is a bit bespoke, but we need ẑ(s) ≥ 0
everywhere, and ẑ(s) = 0 for all locations outside the
footprint of

⋃
j φj , regardless of how we transform z .
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Modelling options

Reminder of the model:

BC(z(s);λ) = BC(0;λ) +
k∑

j=1

βjφj(s) + r(s), s ∈ S ⊂ R2.

I Choice of basis functions, φj (multitudinous)

I Choice of fitting method (spoiler alert, LASSO)

I Choice of transformation, λ

I Addition of pseudo-measurements

Let’s take these in reverse order . . .
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Modelling options, pseudo-measurements

Tephra thicknesses for Aso-4
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Modelling options, transformation

BC(z(s);λ) = BC(0;λ) +
k∑

j=1

βjφj(s) + r(s), s ∈ S ⊂ R2.

Remembering that z ≥ 0,

I λ = 1 (linear) tends to over-weight the largest thicknesses,
which is problematic because at least some of the
measurement error is proportional.

I But λ = 0 (logarithmic) tends to overweight the smallest
measurements, which is problematic because they can also be
quite inaccurate, and they contribute least to the estimate of
volume.

I So after some experimentation, we have currently settled on
λ = 1

2 (square-root), which seems to give reasonable results,
as judged by the volcanologists.
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Modelling options, basis functions

We want bell-shaped basis functions with compact support.

I I like the bisquare,

b(s) =
(
1− ‖s‖2

)2
, ‖s‖ ≤ 1

and b(s) = 0 otherwise, which lives on the unit disk.

I But then map the unit disk to ellipses,(
x ′

y ′

)
=

(
x0
y0

)
+

(
cos θ − sin θ
sin θ cos θ

) (
a 0
0 b

) (
x
y

)
,

and use a lot of them.
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Modelling options, basis functions

I Where to put these ellipses?

I Putting them at the data sites leads to over-fitting,

I And yet we want more where the density of sites is high,

I So I ended up using the Delaunay triangulation of the sites.

I Specifically, the centroids of the Delaunay tiles with minimum
edge length of at least 100 km.
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Modelling options, basis functions

Locations of the 80 basis function centres
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Modelling options, basis functions

Multi-resolution: I put 15 ellipses at every centre,

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

where the area of the largest subset (top) was treated as a band-
width parameter, to be learnt and plugged-in; 15× 80 = 1200 basis
functions altogether.
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Modelling options, bandwidth
We have 1200 basis functions, an unknown bandwidth parameter,
and only 118 (very imprecise) measurements.

I Downweight the ‘trace’ measurements using wi = 1/4

I Fit with an L1 penalty, and use ten-fold cross-validation to
choose both the sparsity coefficient λ and the bandwidth:
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Modelling options, fitting

That gets us to our fitted model and our isopach map.
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Modelling options, fitting

That gets us to our fitted model and our isopach map.

Selected basis functions, 5M km2
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Modelling options, fitting

That gets us to our fitted model and our isopach map.

Estimated isopach map
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Modelling options, fitting

That gets us to our fitted model and our isopach map.

Along the transect
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Modelling options, fitting

That gets us to our fitted model and our isopach map.
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The effect of the pseudo-measurements

As fitted
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The effect of the pseudo-measurements

Without pseudo-measurements
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Estimating volume

I didn’t overthink this . . .
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What about variability?

Want to report a 95% CI for volume. We have developed an
algorithm: X 7→ volume; we’re going to bootstrap our way to a
95% confidence interval.

1. ‘Wild’ resampling scheme to allow for heteroskedasticity.

Basically, fit the model and then generate replicates X∗ by
flipping the residual; see Davidson and Flachaire (2008).

2. Bootstrap to estimate the standard error of log-volume. Then
convert the Wald 95% confidence interval for log-volume back
to volume.

3. Fix the bandwidth at 5M km2 throughout, but let the basis
function selection be driven by the resampled dataset.

4. The resulting 95% CI is [220 km3, 370 km3].
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What about variability? (cont)

Simulations from the ‘wild’ resampler
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The slightly lower IQR for the ‘Actual’ is due to treatment of the
‘trace’ measurements; has negligible effect on the volume estimate.
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What about variability? (cont)

Histogram of replicates of log-volume
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This looks OK – thank goodness. Originally I used the
variance-stabilized Studentized Pivotal Bootstrap, but it gave
roughly the same 95% CI.
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Take-home messages

Aimed more at non-statisticians who need to quantify uncertainty
from limited measurements of a complex system.

1. If you have an algorithm for transforming a dataset into an
estimate, then one simple and transparent way to include
expert judgement is through adding pseudo-measurements.

2. If you have an algorithm for transforming a dataset into an
estimate, then you can quantify uncertainty as a 95% CI using
a resampling method, such as a ‘bootstrap’.

3. Modern methods from Statistics and Machine Learning can
provide flexible and data-driven methods for constructing an
algorithm for transforming a dataset into an estimate.

And don’t be surprised if the resulting 95% CI is quite large!
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