# How to tune your simulator 

Jonathan Rougier<br>Rougier Consulting Ltd<br>\& University of Bristol

Barnett Lecture<br>RSS Annual Conference, Sep 2021

## Overview

There are lots of applications where a computer simulator is used to map a time-series of inputs (forcing) into a time-series of outputs.

## Overview

There are lots of applications where a computer simulator is used to map a time-series of inputs (forcing) into a time-series of outputs. E.g., flood modelling in Environmental Science:

The Wye catchment and Hereford


## Outline of our application

Nature gives us this $\because$


## Outline of our application

Our first run of the simulator gives us this


## Outline of our application

So how do we efficiently get to this?


## Outline of my approach

- There is an 'engineering' approach which says minimize the misfit between the simulator output and the observations by varying the simulator parameters, where 'misfit' is usually sum of squared errors.


## Outline of my approach

- There is an 'engineering' approach which says minimize the misfit between the simulator output and the observations by varying the simulator parameters, where 'misfit' is usually sum of squared errors.
- I will show how applying a more statistical approach can lead to a better outcome, even under the 'engineering' criterion.


## Outline of my approach

- There is an 'engineering' approach which says minimize the misfit between the simulator output and the observations by varying the simulator parameters, where 'misfit' is usually sum of squared errors.
- I will show how applying a more statistical approach can lead to a better outcome, even under the 'engineering' criterion.
A. In a statistical approach we link the simulator parameters and the observations in a statistical model, which explicitly allows for limitations in the simulator.


## Outline of my approach

- There is an 'engineering' approach which says minimize the misfit between the simulator output and the observations by varying the simulator parameters, where 'misfit' is usually sum of squared errors.
- I will show how applying a more statistical approach can lead to a better outcome, even under the 'engineering' criterion.
A. In a statistical approach we link the simulator parameters and the observations in a statistical model, which explicitly allows for limitations in the simulator.
B. This produces a smoother objective function, and then we can use statistical optimization to manage the trade-off between 'explore' and 'exploit' with only a limited number of simulator runs.


## A little notation

- $f$ is the simulator, with a scalar output.
- Its inputs comprise control variables $x$ and parameters $\theta$.
- Collectively, $\boldsymbol{x}:=\left(x_{1}, \ldots, x_{n}\right)$ and

$$
f(\boldsymbol{x} ; \theta):=\left(\begin{array}{c}
f\left(x_{1} ; \theta\right) \\
\vdots \\
f\left(x_{n} ; \theta\right)
\end{array}\right)=\left(\begin{array}{c}
f_{1}(\theta) \\
\vdots \\
f_{n}(\theta)
\end{array}\right)=\boldsymbol{f}(\theta) .
$$

- Similarly,

$$
Y(\boldsymbol{x}):=\left(\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right)=\boldsymbol{Y}, \quad Z(\boldsymbol{x}):=\left(\begin{array}{c}
Z_{1} \\
\vdots \\
Z_{n}
\end{array}\right)=\boldsymbol{Z}
$$

are actual system values, and observables, respectively.

## The Normal model

- Assume a transformation of $\boldsymbol{Z}, \boldsymbol{Y}$, and $\boldsymbol{f}$ after which

$$
\begin{aligned}
\boldsymbol{Z} \mid \boldsymbol{Y}, \theta^{*}, \alpha, K & \sim \mathrm{~N}(\boldsymbol{Y}, D) \\
\boldsymbol{Y} \mid \theta^{*}, \alpha, K & \sim \mathrm{~N}\left(\alpha \mathbf{1}+\boldsymbol{f}\left(\theta^{*}\right), K\right)
\end{aligned}
$$

is an acceptable implementation of the best input model.

- $D:=\operatorname{diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}\right)$, a diagonal matrix of reported measurement errors,
- $\theta^{*}$ is the best value of the parameters,
- $\alpha$ is the scalar offset,
- $K$ is the $n \times n$ discrepancy variance.


## The Normal model

- Assume a transformation of $\boldsymbol{Z}, \boldsymbol{Y}$, and $\boldsymbol{f}$ after which

$$
\begin{aligned}
& \boldsymbol{Z} \mid \boldsymbol{Y}, \theta^{*}, \alpha, K \\
& \left.\quad \boldsymbol{Y} \mid \theta^{*}, \alpha, \boldsymbol{K}, D\right) \\
& \quad \mathrm{N}\left(\alpha \mathbf{1}+\boldsymbol{f}\left(\theta^{*}\right), K\right)
\end{aligned}
$$

is an acceptable implementation of the

- 'best input' model.
- $D:=\operatorname{diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}\right)$, a diagonal matrix of reported measurement errors,
- $\theta^{*}$ is the best value of the parameters,
- $\alpha$ is the scalar offset,
- $K$ is the $n \times n$ discrepancy variance.
- Integrating out $\boldsymbol{Y}$,

$$
\boldsymbol{Z} \mid \theta^{*}, \alpha, K \sim \mathrm{~N}\left(\alpha \mathbf{1}+\boldsymbol{f}\left(\theta^{*}\right), K+D\right)
$$

from which derive $L\left(\theta^{*}, \alpha, K\right)$, based on measurements $z^{\text {obs }}$.

## The Normal model (cont)

- We can use the deviance,

$$
-2 \log L\left(\theta^{*}, \alpha, K\right)
$$

as a measure of misfit. There are a couple of nuisance parameters

## The Normal model (cont)

- We can use the deviance,

$$
-2 \log L\left(\theta^{*}, \alpha, K\right)
$$

as a measure of misfit. There are a couple of nuisance parameters

- The 'engineering' approach eliminates the nuisance parameters by setting them to zero,

$$
-2 \log L^{\mathrm{eng}}\left(\theta^{*}\right):=-2 \log L\left(\theta^{*}, 0, \mathbf{0}\right)=\sum_{i=1}^{n} \frac{\left(z_{i}^{\mathrm{obs}}-f_{i}\left(\theta^{*}\right)\right)^{2}}{\sigma_{i}^{2}}
$$

apparently hoping that treating the simulator as perfect will make its limitations go away

## Can we do better?

We want to do something about those two nuisance parameters, other than setting them both to zero.

## Can we do better?

We want to do something about those two nuisance parameters, other than setting them both to zero.

- Treat $K$ as stationary, and thin $z^{\text {obs }}$ to the point where $K_{\mathcal{J}, \mathcal{J}} \approx \kappa^{2} I$, where $\mathcal{J} \subset\{1, \ldots, n\}$ are the retained outputs:

$$
-2 \log L_{\mathcal{J}}\left(\theta^{*}, \alpha, \kappa\right) \approx \sum_{i \in \mathcal{J}} \frac{\left\{z_{i}^{\text {obs }}-\left(\alpha+f_{i}\left(\theta^{*}\right)\right)\right\}^{2}}{\kappa^{2}+\sigma_{i}^{2}}+\sum_{i \in \mathcal{J}} \log \left(\kappa^{2}+\sigma_{i}^{2}\right)
$$

## Can we do better?

We want to do something about those two nuisance parameters, other than setting them both to zero.

- Treat $K$ as stationary, and thin $z^{\text {obs }}$ to the point where $K_{\mathcal{J}, \mathcal{J}} \approx \kappa^{2} I$, where $\mathcal{J} \subset\{1, \ldots, n\}$ are the retained outputs:

$$
-2 \log L_{\mathcal{J}}\left(\theta^{*}, \alpha, \kappa\right) \approx \sum_{i \in \mathcal{J}} \frac{\left\{z_{i}^{\text {obs }}-\left(\alpha+f_{i}\left(\theta^{*}\right)\right)\right\}^{2}}{\kappa^{2}+\sigma_{i}^{2}}+\sum_{i \in \mathcal{J}} \log \left(\kappa^{2}+\sigma_{i}^{2}\right)
$$

- Profile out $\alpha$ and $\kappa$ (1D numerical optimization) to give thin \& prof likelihood, More details

$$
L_{\mathcal{J}}^{\mathrm{prf}}\left(\theta^{*}\right):=\max _{\alpha, \kappa} L_{\mathcal{J}}\left(\theta^{*}, \alpha, \kappa\right)
$$

## Can we do better?

We want to do something about those two nuisance parameters, other than setting them both to zero.

- Treat $K$ as stationary, and thin $z^{\text {obs }}$ to the point where $K_{\mathcal{J}, \mathcal{J}} \approx \kappa^{2} I$, where $\mathcal{J} \subset\{1, \ldots, n\}$ are the retained outputs:

$$
-2 \log L_{\mathcal{J}}\left(\theta^{*}, \alpha, \kappa\right) \approx \sum_{i \in \mathcal{J}} \frac{\left\{z_{i}^{\text {obs }}-\left(\alpha+f_{i}\left(\theta^{*}\right)\right)\right\}^{2}}{\kappa^{2}+\sigma_{i}^{2}}+\sum_{i \in \mathcal{J}} \log \left(\kappa^{2}+\sigma_{i}^{2}\right)
$$

- Profile out $\alpha$ and $\kappa$ (1D numerical optimization) to give thin \& prof likelihood, More details

$$
L_{\mathcal{J}}^{\mathrm{prf}}\left(\theta^{*}\right):=\max _{\alpha, \kappa} L_{\mathfrak{J}}\left(\theta^{*}, \alpha, \kappa\right)
$$

- I'm not claiming that this is awesome statistics (indeed, profile likelihood is a bit mysterious). But $L_{\mathcal{J}}^{\text {prf }}$ is an attainable incremental improvement on current practice.


## The buckets simulator



Parameters are $\left(D_{i}, H_{i}\right)$ for each bucket. A time-series for forcing is specified, the outputs are a time-series for each $h_{i}$.

## The system

Nature is running a five-bucket system, with $D_{i}=0.3, H_{i}=0.5$. Observe $h_{5}$ with a known state-dependent measurement error.


## Thinning $=$ 'feature extraction'

## All of the observations



## Thinning $=$ 'feature extraction'

## Drop the noisiest



## Thinning $=$ 'feature extraction'

Add a moving average


## Thinning $=$ 'feature extraction'

## Drop the outliers



## Thinning $=$ 'feature extraction'

Thin the survivors


## Our simulator

We're running a three-bucket simulator, matching our $h_{3}$ to observations of nature's $h_{5}$. Here are the initial stages of a Downhill Simplex optimizer.

## Our simulator

We're running a three-bucket simulator, matching our $h_{3}$ to observations of nature's $h_{5}$. Here are the initial stages of a Downhill Simplex optimizer.


## Our simulator

We're running a three-bucket simulator, matching our $h_{3}$ to observations of nature's $h_{5}$. Here are the initial stages of a Downhill Simplex optimizer.


## Our simulator

We're running a three-bucket simulator, matching our $h_{3}$ to observations of nature's $h_{5}$. Here are the initial stages of a Downhill Simplex optimizer.

Best after 10 runs


## Our simulator

We're running a three-bucket simulator, matching our $h_{3}$ to observations of nature's $h_{5}$. Here are the initial stages of a Downhill Simplex optimizer.

Best after 15 runs


## Our simulator

We're running a three-bucket simulator, matching our $h_{3}$ to observations of nature's $h_{5}$. Here are the initial stages of a Downhill Simplex optimizer.

Best after 20 runs


## Our simulator

We're running a three-bucket simulator, matching our $h_{3}$ to observations of nature's $h_{5}$. Here are the initial stages of a Downhill Simplex optimizer.

Best after 25 runs


## Our simulator

We're running a three-bucket simulator, matching our $h_{3}$ to observations of nature's $h_{5}$. Here are the initial stages of a Downhill Simplex optimizer.

Best after 30 runs


## Our simulator

We're running a three-bucket simulator, matching our $h_{3}$ to observations of nature's $h_{5}$. Here are the initial stages of a Downhill Simplex optimizer.

Best after 35 runs


## Our simulator

We're running a three-bucket simulator, matching our $h_{3}$ to observations of nature's $h_{5}$. Here are the initial stages of a Downhill Simplex optimizer.

Best after 40 runs


## Our simulator

We're running a three-bucket simulator, matching our $h_{3}$ to observations of nature's $h_{5}$. Here are the initial stages of a Downhill Simplex optimizer.

Best after 45 runs


## Our simulator

We're running a three-bucket simulator, matching our $h_{3}$ to observations of nature's $h_{5}$. Here are the initial stages of a Downhill Simplex optimizer.


## Our simulator

We're running a three-bucket simulator, matching our $h_{3}$ to observations of nature's $h_{5}$. Here are the initial stages of a Downhill Simplex optimizer.


## Our simulator

We're running a three-bucket simulator, matching our $h_{3}$ to observations of nature's $h_{5}$. Here are the initial stages of a Downhill Simplex optimizer.


## Our simulator

We're running a three-bucket simulator, matching our $h_{3}$ to observations of nature's $h_{5}$. Here are the initial stages of a Downhill Simplex optimizer.


## Our simulator

We're running a three-bucket simulator, matching our $h_{3}$ to observations of nature's $h_{5}$. Here are the initial stages of a Downhill Simplex optimizer.

Best after 70 runs


## What's going on?

The original likelihood function is lumpy (Rougier, 2013), and it is hard for the optimiser to make progress. Not so the thin \& prof likelihood:


## Where next?

The thin \& prof log-likelihood function ought to be smooth-ish, especially near to the global maximum. This seems like a good candidate for Bayesian optimization, to squeeze out a better fit than the best so far.

## Bayesian optimization

- Let $m$ and $v$ be the current expectation and variance functions of the GP emulator of $\ell:=-2 \log L_{J}^{\text {prff }}$; should be smooth-ish functions of $\theta$.


## Bayesian optimization

- Let $m$ and $v$ be the current expectation and variance functions of the GP emulator of $\ell:=-2 \log L_{\mathcal{J}}^{\text {prf }} ;$ should be smooth-ish functions of $\theta$.
- Let $\ell^{\text {best }}$ be the best (smallest) value found so far. We choose the next run to be at the $\theta$ which minimizes the expected value of the 'improvement'

$$
\lambda\left(\ell_{\theta}\right):= \begin{cases}\ell_{\theta} & \ell_{\theta}<\ell^{\text {best }} \\ \ell^{\text {best }} & \ell_{\theta} \geq \ell^{\text {best }}\end{cases}
$$

as proposed in Osborne et al. (2009).

## Bayesian optimization

- Let $m$ and $v$ be the current expectation and variance functions of the GP emulator of $\ell:=-2 \log L_{\jmath}^{\text {prff }}$; should be smooth-ish functions of $\theta$.
- Let $\ell^{\text {best }}$ be the best (smallest) value found so far. We choose the next run to be at the $\theta$ which minimizes the expected value of the 'improvement'

$$
\lambda\left(\ell_{\theta}\right):= \begin{cases}\ell_{\theta} & \ell_{\theta}<\ell^{\text {best }} \\ \ell^{\text {best }} & \ell_{\theta} \geq \ell^{\text {best }}\end{cases}
$$

as proposed in Osborne et al. (2009).

- Some algebra shows that

$$
\mathbb{E}\left\{\lambda\left(L_{\theta}\right)\right\}=\ell^{\text {best }}+\left(m(\theta)-\ell^{\text {best }}\right) \Phi\left(\ell^{\text {best }}\right)-v(\theta) \phi\left(\ell^{\text {best }}\right),
$$

where $L_{\theta}$ is the unknown value of $\ell_{\theta}, \Phi$ and $\phi$ are the Gaussian distribution function and density function, evaluated with $m(\theta)$ and $v(\theta)$.

## Bayesian optimization (cont)

Simple adaptive search:

After run 71



## Bayesian optimization (cont)

Simple adaptive search:

$$
\text { After run } 72
$$



## Bayesian optimization (cont)

Simple adaptive search:

After run 73



## Bayesian optimization (cont)

Simple adaptive search:

After run 74



## Bayesian optimization (cont)

Simple adaptive search:

After run 75



## Bayesian optimization (cont)

Simple adaptive search:

After run 76

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 0 |

## Bayesian optimization (cont)

Simple adaptive search:

After run 77



## Bayesian optimization (cont)

Simple adaptive search:

After run 78



## Bayesian optimization (cont)

Simple adaptive search:

After run 79



## Bayesian optimization (cont)

Simple adaptive search:

After run 80



## Bayesian optimization (cont)

Simple adaptive search:

After run 81

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 0 |

## Bayesian optimization (cont)

Simple adaptive search:

After run 82



## Bayesian optimization (cont)

Simple adaptive search:

After run 83



## Bayesian optimization (cont)

Simple adaptive search:

After run 84



## Bayesian optimization (cont)

Simple adaptive search:

After run 85



## Bayesian optimization (cont)

Simple adaptive search:

After run 86



## Bayesian optimization (cont)

Simple adaptive search:

After run 87



## Bayesian optimization (cont)

Simple adaptive search:

After run 88



## Bayesian optimization (cont)

Simple adaptive search:

After run 89



## Bayesian optimization (cont)

Simple adaptive search:

After run 90



## Bayesian optimization (cont)

Simple adaptive search:

$$
\text { After run } 91
$$



## Bayesian optimization (cont)

Simple adaptive search:

After run 92


## Bayesian optimization (cont)

Simple adaptive search:

$$
\text { After run } 93
$$



## Bayesian optimization (cont)

Simple adaptive search:


## Results

I use the RobustGaSP emulator (Gu et al., 2018) with linear and quadratic trend (centred), a $9^{6}$-point grid for $\mathcal{S}^{+}$(half a million points), and optim(method $=$ "L-BFGS-B") for the quasi-Newton method.

## Results

I use the RobustGaSP emulator (Gu et al., 2018) with linear and quadratic trend (centred), a $9^{6}$-point grid for $\mathcal{S}^{+}$(half a million points), and optim(method $=$ "L-BFGS-B") for the quasi-Newton method.


## Second phase of runs

Original continues with Downhill Simplex. Thin \& prof switches to Bayesian optimization.

## Second phase of runs

Original continues with Downhill Simplex. Thin \& prof switches to Bayesian optimization.


## Second phase of runs

Original continues with Downhill Simplex. Thin \& prof switches to Bayesian optimization.


## Second phase of runs

Original continues with Downhill Simplex. Thin \& prof switches to Bayesian optimization.


## Second phase of runs

Original continues with Downhill Simplex. Thin \& prof switches to Bayesian optimization.


## Second phase of runs

Original continues with Downhill Simplex. Thin \& prof switches to Bayesian optimization.


## Second phase of runs

Original continues with Downhill Simplex. Thin \& prof switches to Bayesian optimization.


## Second phase of runs

Original continues with Downhill Simplex. Thin \& prof switches to Bayesian optimization.


## Second phase of runs

Original continues with Downhill Simplex. Thin \& prof switches to Bayesian optimization.


## Second phase of runs

Original continues with Downhill Simplex. Thin \& prof switches to Bayesian optimization.


## Second phase of runs

Original continues with Downhill Simplex. Thin \& prof switches to Bayesian optimization.


## Second phase of runs

Original continues with Downhill Simplex. Thin \& prof switches to Bayesian optimization.


## Second phase of runs

Original continues with Downhill Simplex. Thin \& prof switches to Bayesian optimization.


## Second phase of runs

Original continues with Downhill Simplex. Thin \& prof switches to Bayesian optimization.


## Second phase of runs

Original continues with Downhill Simplex. Thin \& prof switches to Bayesian optimization.


## Second phase of runs

Original continues with Downhill Simplex. Thin \& prof switches to Bayesian optimization.


## Second phase of runs

Original continues with Downhill Simplex. Thin \& prof switches to Bayesian optimization.


## Second phase of runs

Original continues with Downhill Simplex. Thin \& prof switches to Bayesian optimization.


## Second phase of runs

Original continues with Downhill Simplex. Thin \& prof switches to Bayesian optimization.


## Second phase of runs

Original continues with Downhill Simplex. Thin \& prof switches to Bayesian optimization.


## Second phase of runs

Original continues with Downhill Simplex. Thin \& prof switches to Bayesian optimization.


## Second phase of runs

Original continues with Downhill Simplex. Thin \& prof switches to Bayesian optimization.


## Second phase of runs

Original continues with Downhill Simplex. Thin \& prof switches to Bayesian optimization.


## Second phase of runs

Original continues with Downhill Simplex. Thin \& prof switches to Bayesian optimization.


## Second phase of runs

Original continues with Downhill Simplex. Thin \& prof switches to Bayesian optimization.


## Second phase of runs

Original continues with Downhill Simplex. Thin \& prof switches to Bayesian optimization.


## Second phase of runs

Original continues with Downhill Simplex. Thin \& prof switches to Bayesian optimization.


## Second phase of runs

Original continues with Downhill Simplex. Thin \& prof switches to Bayesian optimization.


## Second phase of runs

Original continues with Downhill Simplex. Thin \& prof switches to Bayesian optimization.


## Second phase of runs

Original continues with Downhill Simplex. Thin \& prof switches to Bayesian optimization.


## Second phase of runs

Original continues with Downhill Simplex. Thin \& prof switches to Bayesian optimization.


## Second phase of runs

Original continues with Downhill Simplex. Thin \& prof switches to Bayesian optimization.


## A gratifying result

The optimized thin \& prof model typically performs better than the optimized original model, even according to the original model log-likelihood ( $\alpha$ plugged in).


## Extensions

Other structural outputs; e.g., spatial
Exactly the same approach: thin and profile.
Two or more time-series
Need to choose one of:

1. Same $\alpha$ and $\kappa$ for both/all time-series?
2. Different $\alpha$, same $\kappa$ ?
3. Same $\alpha$, different $\kappa$ ? (this one seems odd)
4. Different $\alpha$, different $\kappa$ ?

## Prediction

As well as $\theta^{*}$, need to carry information about $\alpha$ and $\kappa$ through into the prediction: possibly just plug-in. We get pointwise approximate $95 \%$ confidence intervals for the predicted time-series under new forcing.

## Summary

1. We recognize the limitations of the simulator by including an offset and a discrepancy. Not recognizing this results in a log-likelihood function which is lumpy.

## Summary

1. We recognize the limitations of the simulator by including an offset and a discrepancy. Not recognizing this results in a log-likelihood function which is lumpy.
2. By thinning the observations we can profile out the offset and the discrepancy variance, and the resulting likelihood function is smooth-ish.

## Summary

1. We recognize the limitations of the simulator by including an offset and a discrepancy. Not recognizing this results in a log-likelihood function which is lumpy.
2. By thinning the observations we can profile out the offset and the discrepancy variance, and the resulting likelihood function is smooth-ish.
3. Downhill Simplex optimization then works fairly well, and generates a set of candidate points that - we hope - straddle the global optimum.

## Summary

1. We recognize the limitations of the simulator by including an offset and a discrepancy. Not recognizing this results in a log-likelihood function which is lumpy.
2. By thinning the observations we can profile out the offset and the discrepancy variance, and the resulting likelihood function is smooth-ish.
3. Downhill Simplex optimization then works fairly well, and generates a set of candidate points that - we hope - straddle the global optimum.
4. We switch to Bayesian optimization to finish the job efficiently, emulating the log-likelihood with a Gaussian Process, and using adaptive search.

## Summary

1. We recognize the limitations of the simulator by including an offset and a discrepancy. Not recognizing this results in a log-likelihood function which is lumpy.
2. By thinning the observations we can profile out the offset and the discrepancy variance, and the resulting likelihood function is smooth-ish.
3. Downhill Simplex optimization then works fairly well, and generates a set of candidate points that - we hope - straddle the global optimum.
4. We switch to Bayesian optimization to finish the job efficiently, emulating the log-likelihood with a Gaussian Process, and using adaptive search.
5. While there are no guarantees, we hope this approach produces a better estimate of the best input, for the same number of simulator runs.

## THE END

Time for questions and discussion.

## References

Goldstein, M. and Rougier, J. C. (2004). Probabilistic formulations for transferring inferences from mathematical models to physical systems. SIAM Journal on Scientific Computing, 26(2):467-487.
Goldstein, M. and Rougier, J. C. (2009). Reified Bayesian modelling and inference for physical systems. Journal of Statistical Planning and Inference, 139:1221-1239. With discussion, pp. 1243-1256.
Gu, M., Wang, X., and Berger, J. O. (2018). Robust Gaussian stochastic process emulation. Annals of Statistics, 46(6A):3038-3066.
Osborne, M. A., Garnett, R., and Roberts, S. J. (2009). Gaussian processes for global optimization. 3rd International Conference on Learning and Intelligent Optimization (LION3), pages 1-15. Available at http://www.robots.ox.ac.uk/~mosb/public/pdf/1419/Osborne\ et\ al. \% 20-\%202009\%20-\% 20Gaussian\%20processes\%20for $\% 20$ global $\% 20$ optimization.pdf.
Rougier, J. C. (2007). Probabilistic inference for future climate using an ensemble of climate model evaluations. Climatic Change, 81:247-264.
Rougier, J. C. (2013). 'Intractable and unsolved': Some thoughts on statistical data assimilation with uncertain static parameters. Phil. Trans. R. Soc. A, 371:20120297.

Rougier, J. C. and Goldstein, M. (2014). Climate simulators and climate projections. Annual Review of Statistics and Its Application, 1:103-123.

## The 'best input' model

See Goldstein and Rougier (2004, 2009), Rougier (2007), Rougier and Goldstein (2014). This is the ubiquitous model for linking simulator runs, the system, and observables.

- There is a 'best' value of the parameters, $\theta^{*}$, such that $\boldsymbol{Y} \Perp \theta^{*} \mid \boldsymbol{f}\left(\theta^{*}\right)$, or, as a DAG,

$$
\theta^{*}=\boldsymbol{f}\left(\theta^{*}\right) \longrightarrow \boldsymbol{Y}
$$

where $=$ denotes a deterministic edge. If we knew $\theta^{*}$, we'd run the simulator just once to predict $\boldsymbol{Y}$, no matter what the value of $\theta^{*}$ happened to be.

- Also ubiquitous is to add on a simple error structure for the observables



## Can we do better? (cont)

- We can profile out $\alpha$ directly

$$
L_{\mathfrak{J}}(\theta, \kappa):=\max _{\alpha \in\left[-\alpha_{\max }, \alpha_{\max }\right]} L_{\mathfrak{J}}(\theta, \alpha, \kappa)=L_{\mathcal{J}}(\theta, \tilde{\alpha}(\theta, \kappa), \kappa)
$$

where

$$
\begin{aligned}
& \hat{\alpha}(\theta, \kappa):=\sum_{i \in \mathcal{J}} w_{i}\left(z_{i}^{\text {obs }}-f_{i}(\theta)\right), \quad w_{i}:=\frac{\left(\kappa^{2}+\sigma_{i}^{2}\right)^{-1}}{\sum_{j}\left(\kappa^{2}+\sigma_{j}^{2}\right)^{-1}} \\
& \tilde{\alpha}(\theta, \kappa):=-\alpha_{\max } \vee \hat{\alpha}(\theta, \kappa) \wedge \alpha_{\max } .
\end{aligned}
$$

- Then we can profile out $\kappa$ using a 1D numerical optimization,

$$
L_{\mathfrak{J}}(\theta):=\max _{\kappa \in\left[0, \kappa_{\max }\right]} L_{\mathfrak{J}}(\theta, \tilde{\alpha}(\theta, \kappa), \kappa) .
$$

- Computing $L_{\mathfrak{J}}(\theta)$ only requires one run of the simulator, plus a quick numerical optimization; i.e., its cost is comparable to computing the original $L(\theta)$.


## Can we do better? (cont)

- The bounds on $\alpha$ and $\kappa$ in the profile likelihoods are not just for show. Profile likelihood is a notoriously tricky approach for estimating variances, and we want to keep $\alpha$ and $\kappa$ fairly close to their default values of 0 and 0 in order to stop the profile running off to a statistical but not plausible solution.

I have been using

$$
\alpha_{\max }=\kappa_{\max }=2 \operatorname{median}\left\{\sigma_{1}, \ldots, \sigma_{n}\right\} .
$$

- In summary, we have (at least) two approaches:

1. Original model, which is just the scaled sum of squared deviations over all outputs, i.e. no discrepancy.
2. Thin \& prof model, where the outputs have been thinned, and the discrepancy parameters have been profiled out.

## Bayesian optimization (cont)

A myopic adaptive approach (simple, room for improvement):
0 a . Find the bounding box of all inputs so far, $\mathcal{B}$.
0 b. Expand by $10 \%$ from the centroid to give $\mathcal{B}^{+}$(don't overshoot the parameter limits).

0c. Fill $\mathcal{B}^{+}$with a grid to give $\mathcal{S}^{+}$.

1. Build a GP emulator of $\ell$ using all runs so far.
2. Evaluate $\mathbb{E}\left\{\lambda\left(L_{\theta}\right)\right\}$ at every point in $\mathcal{S}^{+}$.
3. Improve the best point on $\mathcal{S}^{+}$using a quasi-Newton method, staying inside $\mathcal{B}^{+}$, to give $\theta^{\text {new }}$.
4. Run the simulator at $\theta^{\text {new }}$ and compute the profile likelihood $\ell_{\theta^{\text {new }}}$.
5. If $\theta^{\text {new }}$ is outside $\mathcal{B}$, go back to 0 , otherwise go back to 1 .
