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Overview

There are lots of applications where a computer simulator is used
to map a time-series of inputs (forcing) into a time-series of
outputs.
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Overview

There are lots of applications where a computer simulator is used
to map a time-series of inputs (forcing) into a time-series of
outputs. E.g., flood modelling in Environmental Science:

The Wye catchment and Hereford
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Outline of our application

Nature gives us this (=2

0.7
0.6
0.5+
0.4

0.3+

Water height, metres

0.2

0.1+

| Meas. 2 std

0.0 T T T
20 40

60

80 100

Time, seconds

3/21



Outline of our application

Our first run of the simulator gives us this D
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Outline of our application

So how do we efficiently get to this? &2
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Outline of my approach

» There is an ‘engineering’ approach which says minimize the
misfit between the simulator output and the observations by
varying the simulator parameters, where ‘misfit’ is usually sum
of squared errors.
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Outline of my approach

» There is an ‘engineering’ approach which says minimize the
misfit between the simulator output and the observations by
varying the simulator parameters, where ‘misfit’ is usually sum
of squared errors.

» | will show how applying a more statistical approach can lead
to a better outcome, even under the ‘engineering’ criterion.

A. In a statistical approach we link the simulator parameters and
the observations in a statistical model, which explicitly allows
for limitations in the simulator.

B. This produces a smoother objective function, and then we can
use statistical optimization to manage the trade-off between
‘explore’ and ‘exploit’ with only a limited number of simulator
runs.
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A little notation

P> f is the simulator, with a scalar output.

P Its inputs comprise control variables x and parameters 6.

» Collectively, x := (x1,...,x,) and
f(x1;0) f(0)
f(x;0) = : = : = f(0).
f(xn; 6) fn(0)
> Similarly,
Yl Zl
Yx)=|:]|=Y, Z(x)=]|:|=2Z
Yn Zn

are actual system values, and observables, respectively.
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The Normal model

» Assume a transformation of Z, Y, and f after which

Z|Y,0%,a,K ~N(Y,D)
Y |6, 0, K ~ N (o1 + F(6%), K)

is an acceptable implementation of the

» D := diag(o%,...,02), a diagonal matrix of reported
measurement errors,

» 0* is the best value of the parameters,

» « is the scalar offset,

» K is the n x n discrepancy variance.
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The Normal model

» Assume a transformation of Z, Y, and f after which

Z|Y,0%,a,K ~N(Y,D)
Y |6, 0, K ~ N (o1 + F(6%), K)

is an acceptable implementation of the

» D := diag(o?,...,02), a diagonal matrix of reported
measurement errors,
» 0* is the best value of the parameters,

> « is the scalar offset,
» K is the n x n discrepancy variance.

P Integrating out Y,
Z|0*,a,K~N <a1+f(0*),K—|—D),

from which derive L(0*, a, K), based on measurements z

obs
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The Normal model (cont)

» We can use the deviance,
—2log L(6%, o, K),

as a measure of misfit. There are a couple of nuisance
parameters (=
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The Normal model (cont)

» We can use the deviance,
—2log L(6%, o, K),

as a measure of misfit. There are a couple of nuisance
parameters (=

> The ‘engineering’ approach eliminates the nuisance
parameters by setting them to zero,

n obs f; o* 2
~2log L"E(0") := —2log L(0%,0,0) = 3 &> = 07)”

i=1 J

apparently hoping that treating the simulator as perfect will
make its limitations go away (¢
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Can we do better?

We want to do something about those two nuisance parameters,
other than setting them both to zero.
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Can we do better?

We want to do something about those two nuisance parameters,
other than setting them both to zero.

> Treat K as stationary, and thin z°° to the point where
Kjg ~ K21, where 3 C {1,...,n} are the retained outputs:

s — (o £(0)
K2 + 02

—2log Ly (0", , k) Z {z
i€d

-1—2 |og(m2+o,-2),
i€eJ
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Can we do better?
We want to do something about those two nuisance parameters,

other than setting them both to zero.

> Treat K as stationary, and thin z°° to the point where
Kjg ~ K21, where 3 C {1,...,n} are the retained outputs:

obs f o*
—2log Ly (0", , k) Z {z 2a+ ( ))} +Z log(k2+0?),
il K2+ o7 il

» Profile out o and x (1D numerical optimization) to give thin
& prof likelihood,

Ljprf(ﬁ*) = max Ly(0*, a, k)

a,K
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Can we do better?

We want to do something about those two nuisance parameters,
other than setting them both to zero.

> Treat K as stationary, and thin z°° to the point where
Kjg ~ K21, where 3 C {1,...,n} are the retained outputs:

obs f o*
—2log Ly (0", , k) Z {= nza—:_a ( ))} +Z log(k2+0?),

i€J i€J

» Profile out o and x (1D numerical optimization) to give thin
& prof likelihood,

Ljprf(ﬁ*) = max Ly(0*, a, k)

a,K

» I'm not claiming that this is awesome statistics (indeed, profile
likelihood is a bit mysterious). But L,’;rf is an attainable
incremental improvement on current practice.
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The buckets simulator

Forcing

L
] r—

mhf“ﬂ

D3

Parameters are (D;, H;) for each bucket. A time-series for forcing
is specified, the outputs are a time-series for each h;.
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The system

Nature is running a five-bucket system, with D; = 0.3, H; = 0.5.
Observe hs with a known state-dependent measurement error.
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Thinning = ‘feature extraction’

All of the observations
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Thinning = ‘feature extraction’

Drop the noisiest

Water height, metres
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Thinning = ‘feature extraction’

Add a moving average
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Thinning = ‘feature extraction’

Drop the outliers

Water height, metres
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Thinning = ‘feature extraction’

Thin the survivors

Water height, metres
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Our simulator

We're running a three-bucket simulator, matching our hs to
observations of nature's hs. Here are the initial stages of a
Downhill Simplex optimizer.
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Our simulator

We're running a three-bucket simulator, matching our hs to
observations of nature's hs. Here are the initial stages of a
Downhill Simplex optimizer.
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Our simulator

We're running a three-bucket simulator, matching our hs to
observations of nature's hs. Here are the initial stages of a
Downhill Simplex optimizer.

Best after 5 runs
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Our simulator

We're running a three-bucket simulator, matching our hs to
observations of nature's hs. Here are the initial stages of a
Downhill Simplex optimizer.

Best after 10 runs
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Our simulator

We're running a three-bucket simulator, matching our hs to
observations of nature's hs. Here are the initial stages of a
Downhill Simplex optimizer.

Best after 15 runs
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Our simulator

We're running a three-bucket simulator, matching our hs to
observations of nature's hs. Here are the initial stages of a
Downhill Simplex optimizer.

Best after 20 runs
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Our simulator

We're running a three-bucket simulator, matching our hs to
observations of nature's hs. Here are the initial stages of a
Downhill Simplex optimizer.

Best after 25 runs
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Our simulator

We're running a three-bucket simulator, matching our hs to
observations of nature's hs. Here are the initial stages of a
Downhill Simplex optimizer.

Best after 30 runs
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Our simulator

We're running a three-bucket simulator, matching our hs to
observations of nature's hs. Here are the initial stages of a
Downhill Simplex optimizer.

Best after 35 runs
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Our simulator

We're running a three-bucket simulator, matching our hs to
observations of nature's hs. Here are the initial stages of a
Downhill Simplex optimizer.

Best after 40 runs
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Our simulator

We're running a three-bucket simulator, matching our hs to
observations of nature's hs. Here are the initial stages of a
Downhill Simplex optimizer.

Best after 45 runs
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Our simulator

We're running a three-bucket simulator, matching our hs to
observations of nature's hs. Here are the initial stages of a
Downhill Simplex optimizer.

Best after 50 runs
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Our simulator

We're running a three-bucket simulator, matching our hs to
observations of nature's hs. Here are the initial stages of a
Downhill Simplex optimizer.

Best after 55 runs
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Our simulator

We're running a three-bucket simulator, matching our hs to
observations of nature's hs. Here are the initial stages of a
Downhill Simplex optimizer.

Best after 60 runs
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Our simulator

We're running a three-bucket simulator, matching our hs to
observations of nature's hs. Here are the initial stages of a
Downhill Simplex optimizer.

Best after 65 runs
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Our simulator

We're running a three-bucket simulator, matching our hs to
observations of nature's hs. Here are the initial stages of a
Downhill Simplex optimizer.

Best after 70 runs
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What's going on?

The original likelihood function is lumpy (Rougier, 2013), and it is
hard for the optimiser to make progress. Not so the thin & prof

likelihood:
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Where next?

The thin & prof log-likelihood function ought to be smooth-ish,
especially near to the global maximum. This seems like a good
candidate for Bayesian optimization, to squeeze out a better fit
than the best so far.
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Bayesian optimization

» Let m and v be the current expectation and variance functions of
the GP emulator of £ := —2log L?rf; should be smooth-ish functions
of 0.
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Bayesian optimization

» Let m and v be the current expectation and variance functions of
the GP emulator of £ := —2log Lgrf; should be smooth-ish functions
of 0.

> Let /Pt be the best (smallest) value found so far. We choose the
next run to be at the # which minimizes the expected value of the

‘improvement’
59 ge < gbest
Alyg) =
( 6) {ébest ZQ > ebest

as proposed in Osborne et al. (2009).
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Bayesian optimization

» Let m and v be the current expectation and variance functions of
the GP emulator of £ := —2log L?rf; should be smooth-ish functions
of 0.

> Let /Pt be the best (smallest) value found so far. We choose the
next run to be at the # which minimizes the expected value of the

‘improvement’
59 £0 < gbest
Aly) =
( 6) {ébest ZQ > ébest
as proposed in Osborne et al. (2009).

» Some algebra shows that
IE{)\(L@)} — ebest + (m(e) _ ebeSt)CD(EbESt) _ \/(9)¢(£best)7

where Ly is the unknown value of ¢y, ® and ¢ are the Gaussian
distribution function and density function, evaluated with m(6) and
v(0).
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Bayesian optimization (cont)

Simple adaptive search:

After run 71
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Bayesian optimization (cont)

Simple adaptive search:

After run 72
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Bayesian optimization (cont)

Simple adaptive search:

After run 73
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Bayesian optimization (cont)

Simple adaptive search:

After run 74

@0000O0Q0C0O0O
L J

000000000

-
000000GOO

o0
ooooo-%oﬁo

Dm!vmﬁﬁu o%

ar
®e 0
OﬂOOOO%.uOO

000000000
000000000

[
Oooo00O0O0O0OO0

16/21



Bayesian optimization (cont)

Simple adaptive search:

After run 75
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Bayesian optimization (cont)

Simple adaptive search:

After run 76
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Bayesian optimization (cont)

Simple adaptive search:

After run 77
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Bayesian optimization (cont)

Simple adaptive search:

After run 78
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Bayesian optimization (cont)

Simple adaptive search:

After run 79
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Bayesian optimization (cont)

Simple adaptive search:

After run 80
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Bayesian optimization (cont)

Simple adaptive search:

After run 81
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Bayesian optimization (cont)

Simple adaptive search:

After run 82
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Bayesian optimization (cont)

Simple adaptive search:

After run 83
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Bayesian optimization (cont)

Simple adaptive search:

After run 84
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Bayesian optimization (cont)

Simple adaptive search:

After run 85
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Bayesian optimization (cont)

Simple adaptive search:

After run 86
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Bayesian optimization (cont)

Simple adaptive search:

After run 87
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Bayesian optimization (cont)

Simple adaptive search:

After run 88
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Bayesian optimization (cont)

Simple adaptive search:

After run 89
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Bayesian optimization (cont)
Simple adaptive search:

After run 90
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Bayesian optimization (cont)
Simple adaptive search:

After run 91
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Bayesian optimization (cont)
Simple adaptive search:

After run 92
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Bayesian optimization (cont)
Simple adaptive search:

After run 93
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Bayesian optimization (cont)
Simple adaptive search:

After run 94
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Bayesian optimization (cont)
Simple adaptive search:

After run 95
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Bayesian optimization (cont)

Simple adaptive search:

After run 96
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Bayesian optimization (cont)

Simple adaptive search:

After run 97
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Bayesian optimization (cont)

Simple adaptive search:

After run 98
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Bayesian optimization (cont)

Simple adaptive search:

After run 99
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Results

| use the RobustGaSP emulator (Gu et al., 2018) with linear and
quadratic trend (centred), a 9°-point grid for §* (half a million points),
and optim(method = "L-BFGS-B") for the quasi-Newton method.
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Second phase of runs

Original continues with Downhill Simplex. Thin & prof switches to
Bayesian optimization.
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Second phase of runs

Original continues with Downhill Simplex. Thin & prof switches to
Bayesian optimization.
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A gratifying result

The optimized thin & prof model typically performs better than
the optimized original model, even according to the original model
log-likelihood (o plugged in).
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Extensions

Other structural outputs; e.g., spatial
Exactly the same approach: thin and profile.

Two or more time-series
Need to choose one of:

1. Same « and & for both/all time-series?

2. Different o, same k7

3. Same «, different k7 (this one seems odd)
4. Different «, different 7

Prediction

As well as 0%, need to carry information about o and & through
into the prediction: possibly just plug-in. We get pointwise
approximate 95% confidence intervals for the predicted time-series
under new forcing.
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Summary

1. We recognize the limitations of the simulator by including an
offset and a discrepancy. Not recognizing this results in a
log-likelihood function which is lumpy.
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Summary
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We recognize the limitations of the simulator by including an
offset and a discrepancy. Not recognizing this results in a
log-likelihood function which is lumpy.

. By thinning the observations we can profile out the offset and

the discrepancy variance, and the resulting likelihood function
is smooth-ish.

Downbhill Simplex optimization then works fairly well, and
generates a set of candidate points that — we hope — straddle
the global optimum.

. We switch to Bayesian optimization to finish the job

efficiently, emulating the log-likelihood with a Gaussian
Process, and using adaptive search.

While there are no guarantees, we hope this approach
produces a better estimate of the best input, for the same
number of simulator runs.
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THE

Time for questions and discussion.

END
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The ‘best input’ model

See Goldstein and Rougier (2004, 2009), Rougier (2007), Rougier and
Goldstein (2014). This is the ubiquitous model for linking simulator runs,
the system, and observables.

» There is a ‘best’ value of the parameters, 8%, such that
Y LL 0*| £(0*), or, as a DAG,

0" —— F(0") —> Y

where denotes a deterministic edge.
If we knew 0%, we'd run the simulator just once to predict Y,
no matter what the value of 0* happened to be.

» Also ubiquitous is to add on a simple error structure for the
observables

Y —= 21

0* —— F(0*) —= Y

/\

Yo —— 2,
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Can we do better? (cont)

» We can profile out « directly

Ly(0, k) := : max ]Lg(H,a, k) = Ly(0,8(0, k), k)
Q€| —0max,¥max
where
2, 2\-1
+07)
&0, k) = w; (z°% — £(6)), W,'Z:—(ﬁ :
(0.0 = S wler™ (0) S o Lo

a(0,K) == —amax V &(0, K) A amax-
» Then we can profile out s using a 1D numerical optimization,

Ly(0) == max Ly(0,a(0,k), k).

KE [oaﬁmax]

» Computing Lj(0) only requires one run of the simulator, plus a
quick numerical optimization; i.e., its cost is comparable to
computing the original L(0).
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Can we do better? (cont)

» The bounds on « and k in the profile likelihoods are not just
for show. Profile likelihood is a notoriously tricky approach for
estimating variances, and we want to keep « and & fairly close
to their default values of 0 and 0 in order to stop the profile
running off to a statistical but not plausible solution.

| have been using
Omax = Kmax = 2median{o1,...,0p}.

» In summary, we have (at least) two approaches:
1. Original model, which is just the scaled sum of squared
deviations over all outputs, i.e. no discrepancy.

2. Thin & prof model, where the outputs have been thinned, and
the discrepancy parameters have been profiled out.
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Bayesian optimization (cont)

A myopic adaptive approach (simple, room for improvement):

Oa.
0b.

Oc.

Find the bounding box of all inputs so far, B.

Expand by 10% from the centroid to give B™ (don't
overshoot the parameter limits).

Fill B+ with a grid to give 8T.
Build a GP emulator of ¢ using all runs so far.

Evaluate IE{\(Lg)} at every point in 8T,

Improve the best point on 8 using a quasi-Newton method,

staying inside B, to give 9"V,

. Run the simulator at ™" and compute the profile likelihood

g@new .

If 6"V is outside B, go back to 0, otherwise go back to 1.
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