
How to tune your simulator

Jonathan Rougier
Rougier Consulting Ltd
& University of Bristol

Barnett Lecture
RSS Annual Conference, Sep 2021

1 / 21



Overview
There are lots of applications where a computer simulator is used
to map a time-series of inputs (forcing) into a time-series of
outputs.

E.g., flood modelling in Environmental Science:

The Wye catchment and Hereford

2 / 21



Overview
There are lots of applications where a computer simulator is used
to map a time-series of inputs (forcing) into a time-series of
outputs. E.g., flood modelling in Environmental Science:

The Wye catchment and Hereford

2 / 21



Outline of our application

Nature gives us this

3 / 21



Outline of our application

Our first run of the simulator gives us this

3 / 21



Outline of our application

So how do we efficiently get to this?

3 / 21



Outline of my approach

I There is an ‘engineering’ approach which says minimize the
misfit between the simulator output and the observations by
varying the simulator parameters, where ‘misfit’ is usually sum
of squared errors.

I I will show how applying a more statistical approach can lead
to a better outcome, even under the ‘engineering’ criterion.

A. In a statistical approach we link the simulator parameters and
the observations in a statistical model, which explicitly allows
for limitations in the simulator.

B. This produces a smoother objective function, and then we can
use statistical optimization to manage the trade-off between
‘explore’ and ‘exploit’ with only a limited number of simulator
runs.

4 / 21



Outline of my approach

I There is an ‘engineering’ approach which says minimize the
misfit between the simulator output and the observations by
varying the simulator parameters, where ‘misfit’ is usually sum
of squared errors.

I I will show how applying a more statistical approach can lead
to a better outcome, even under the ‘engineering’ criterion.

A. In a statistical approach we link the simulator parameters and
the observations in a statistical model, which explicitly allows
for limitations in the simulator.

B. This produces a smoother objective function, and then we can
use statistical optimization to manage the trade-off between
‘explore’ and ‘exploit’ with only a limited number of simulator
runs.

4 / 21



Outline of my approach

I There is an ‘engineering’ approach which says minimize the
misfit between the simulator output and the observations by
varying the simulator parameters, where ‘misfit’ is usually sum
of squared errors.

I I will show how applying a more statistical approach can lead
to a better outcome, even under the ‘engineering’ criterion.

A. In a statistical approach we link the simulator parameters and
the observations in a statistical model, which explicitly allows
for limitations in the simulator.

B. This produces a smoother objective function, and then we can
use statistical optimization to manage the trade-off between
‘explore’ and ‘exploit’ with only a limited number of simulator
runs.

4 / 21



Outline of my approach

I There is an ‘engineering’ approach which says minimize the
misfit between the simulator output and the observations by
varying the simulator parameters, where ‘misfit’ is usually sum
of squared errors.

I I will show how applying a more statistical approach can lead
to a better outcome, even under the ‘engineering’ criterion.

A. In a statistical approach we link the simulator parameters and
the observations in a statistical model, which explicitly allows
for limitations in the simulator.

B. This produces a smoother objective function, and then we can
use statistical optimization to manage the trade-off between
‘explore’ and ‘exploit’ with only a limited number of simulator
runs.

4 / 21



A little notation
I f is the simulator, with a scalar output.

I Its inputs comprise control variables x and parameters θ.

I Collectively, x := (x1, . . . , xn) and

f (x; θ) :=

f (x1; θ)
...

f (xn; θ)

 =

f1(θ)
...

fn(θ)

 = f (θ).

I Similarly,

Y (x) :=

Y1
...

Yn

 = Y , Z (x) :=

Z1
...

Zn

 = Z

are actual system values, and observables, respectively.

5 / 21



The Normal model
I Assume a transformation of Z , Y , and f after which

Z | Y , θ∗, α,K ∼ N
(
Y ,D

)
Y | θ∗, α,K ∼ N

(
α1 + f (θ∗),K

)
is an acceptable implementation of the ‘best input’ model.

I D := diag(σ2
1 , . . . , σ

2
n), a diagonal matrix of reported

measurement errors,
I θ∗ is the best value of the parameters,
I α is the scalar offset,
I K is the n × n discrepancy variance.

I Integrating out Y ,

Z | θ∗, α,K ∼ N
(
α1 + f (θ∗),K + D

)
,

from which derive L(θ∗, α,K ), based on measurements zobs.

6 / 21



The Normal model
I Assume a transformation of Z , Y , and f after which

Z | Y , θ∗, α,K ∼ N
(
Y ,D

)
Y | θ∗, α,K ∼ N

(
α1 + f (θ∗),K

)
is an acceptable implementation of the ‘best input’ model.

I D := diag(σ2
1 , . . . , σ

2
n), a diagonal matrix of reported

measurement errors,
I θ∗ is the best value of the parameters,
I α is the scalar offset,
I K is the n × n discrepancy variance.

I Integrating out Y ,

Z | θ∗, α,K ∼ N
(
α1 + f (θ∗),K + D

)
,

from which derive L(θ∗, α,K ), based on measurements zobs.
6 / 21



The Normal model (cont)

I We can use the deviance,

−2 log L(θ∗, α,K ),

as a measure of misfit. There are a couple of nuisance
parameters

I The ‘engineering’ approach eliminates the nuisance
parameters by setting them to zero,

−2 log Leng(θ∗) := −2 log L(θ∗, 0, 0) =
n∑

i=1

(
zobs

i − fi (θ∗)
)2

σ2
i

,

apparently hoping that treating the simulator as perfect will
make its limitations go away

7 / 21



The Normal model (cont)

I We can use the deviance,

−2 log L(θ∗, α,K ),

as a measure of misfit. There are a couple of nuisance
parameters

I The ‘engineering’ approach eliminates the nuisance
parameters by setting them to zero,

−2 log Leng(θ∗) := −2 log L(θ∗, 0, 0) =
n∑

i=1

(
zobs

i − fi (θ∗)
)2

σ2
i

,

apparently hoping that treating the simulator as perfect will
make its limitations go away

7 / 21



Can we do better?
We want to do something about those two nuisance parameters,
other than setting them both to zero.

I Treat K as stationary, and thin zobs to the point where
KI,I ≈ κ2I, where I ⊂ {1, . . . , n} are the retained outputs:

−2 log LI(θ∗, α, κ) ≈
∑
i∈I

{
zobs

i − (α + fi (θ∗))
}2

κ2 + σ2
i

+
∑
i∈I

log(κ2+σ2
i ),

I Profile out α and κ (1D numerical optimization) to give thin
& prof likelihood, More details

Lprf
I (θ∗) := max

α,κ
LI(θ∗, α, κ)

I I’m not claiming that this is awesome statistics (indeed, profile
likelihood is a bit mysterious). But Lprf

I is an attainable
incremental improvement on current practice.

8 / 21



Can we do better?
We want to do something about those two nuisance parameters,
other than setting them both to zero.

I Treat K as stationary, and thin zobs to the point where
KI,I ≈ κ2I, where I ⊂ {1, . . . , n} are the retained outputs:

−2 log LI(θ∗, α, κ) ≈
∑
i∈I

{
zobs

i − (α + fi (θ∗))
}2

κ2 + σ2
i

+
∑
i∈I

log(κ2+σ2
i ),

I Profile out α and κ (1D numerical optimization) to give thin
& prof likelihood, More details

Lprf
I (θ∗) := max

α,κ
LI(θ∗, α, κ)

I I’m not claiming that this is awesome statistics (indeed, profile
likelihood is a bit mysterious). But Lprf

I is an attainable
incremental improvement on current practice.

8 / 21



Can we do better?
We want to do something about those two nuisance parameters,
other than setting them both to zero.

I Treat K as stationary, and thin zobs to the point where
KI,I ≈ κ2I, where I ⊂ {1, . . . , n} are the retained outputs:

−2 log LI(θ∗, α, κ) ≈
∑
i∈I

{
zobs

i − (α + fi (θ∗))
}2

κ2 + σ2
i

+
∑
i∈I

log(κ2+σ2
i ),

I Profile out α and κ (1D numerical optimization) to give thin
& prof likelihood, More details

Lprf
I (θ∗) := max

α,κ
LI(θ∗, α, κ)

I I’m not claiming that this is awesome statistics (indeed, profile
likelihood is a bit mysterious). But Lprf

I is an attainable
incremental improvement on current practice.

8 / 21



Can we do better?
We want to do something about those two nuisance parameters,
other than setting them both to zero.

I Treat K as stationary, and thin zobs to the point where
KI,I ≈ κ2I, where I ⊂ {1, . . . , n} are the retained outputs:

−2 log LI(θ∗, α, κ) ≈
∑
i∈I

{
zobs

i − (α + fi (θ∗))
}2

κ2 + σ2
i

+
∑
i∈I

log(κ2+σ2
i ),

I Profile out α and κ (1D numerical optimization) to give thin
& prof likelihood, More details

Lprf
I (θ∗) := max

α,κ
LI(θ∗, α, κ)

I I’m not claiming that this is awesome statistics (indeed, profile
likelihood is a bit mysterious). But Lprf

I is an attainable
incremental improvement on current practice.

8 / 21



The buckets simulator

Parameters are (Di ,Hi ) for each bucket. A time-series for forcing
is specified, the outputs are a time-series for each hi .

9 / 21



The system

Nature is running a five-bucket system, with Di = 0.3, Hi = 0.5.
Observe h5 with a known state-dependent measurement error.

10 / 21



Thinning = ‘feature extraction’

All of the observations

11 / 21



Thinning = ‘feature extraction’

Drop the noisiest

11 / 21



Thinning = ‘feature extraction’

Add a moving average

11 / 21



Thinning = ‘feature extraction’

Drop the outliers

11 / 21



Thinning = ‘feature extraction’

Thin the survivors

11 / 21



Our simulator
We’re running a three-bucket simulator, matching our h3 to
observations of nature’s h5. Here are the initial stages of a
Downhill Simplex optimizer.

12 / 21



Our simulator
We’re running a three-bucket simulator, matching our h3 to
observations of nature’s h5. Here are the initial stages of a
Downhill Simplex optimizer.

12 / 21



Our simulator
We’re running a three-bucket simulator, matching our h3 to
observations of nature’s h5. Here are the initial stages of a
Downhill Simplex optimizer.

12 / 21



Our simulator
We’re running a three-bucket simulator, matching our h3 to
observations of nature’s h5. Here are the initial stages of a
Downhill Simplex optimizer.

12 / 21



Our simulator
We’re running a three-bucket simulator, matching our h3 to
observations of nature’s h5. Here are the initial stages of a
Downhill Simplex optimizer.

12 / 21



Our simulator
We’re running a three-bucket simulator, matching our h3 to
observations of nature’s h5. Here are the initial stages of a
Downhill Simplex optimizer.

12 / 21



Our simulator
We’re running a three-bucket simulator, matching our h3 to
observations of nature’s h5. Here are the initial stages of a
Downhill Simplex optimizer.

12 / 21



Our simulator
We’re running a three-bucket simulator, matching our h3 to
observations of nature’s h5. Here are the initial stages of a
Downhill Simplex optimizer.

12 / 21



Our simulator
We’re running a three-bucket simulator, matching our h3 to
observations of nature’s h5. Here are the initial stages of a
Downhill Simplex optimizer.

12 / 21



Our simulator
We’re running a three-bucket simulator, matching our h3 to
observations of nature’s h5. Here are the initial stages of a
Downhill Simplex optimizer.

12 / 21



Our simulator
We’re running a three-bucket simulator, matching our h3 to
observations of nature’s h5. Here are the initial stages of a
Downhill Simplex optimizer.

12 / 21



Our simulator
We’re running a three-bucket simulator, matching our h3 to
observations of nature’s h5. Here are the initial stages of a
Downhill Simplex optimizer.

12 / 21



Our simulator
We’re running a three-bucket simulator, matching our h3 to
observations of nature’s h5. Here are the initial stages of a
Downhill Simplex optimizer.

12 / 21



Our simulator
We’re running a three-bucket simulator, matching our h3 to
observations of nature’s h5. Here are the initial stages of a
Downhill Simplex optimizer.

12 / 21



Our simulator
We’re running a three-bucket simulator, matching our h3 to
observations of nature’s h5. Here are the initial stages of a
Downhill Simplex optimizer.

12 / 21



Our simulator
We’re running a three-bucket simulator, matching our h3 to
observations of nature’s h5. Here are the initial stages of a
Downhill Simplex optimizer.

12 / 21



What’s going on?
The original likelihood function is lumpy (Rougier, 2013), and it is
hard for the optimiser to make progress. Not so the thin & prof
likelihood:

13 / 21



Where next?

The thin & prof log-likelihood function ought to be smooth-ish,
especially near to the global maximum. This seems like a good
candidate for Bayesian optimization, to squeeze out a better fit
than the best so far.

14 / 21



Bayesian optimization
I Let m and v be the current expectation and variance functions of

the GP emulator of ` := −2 log Lprf
I ; should be smooth-ish functions

of θ.

I Let `best be the best (smallest) value found so far. We choose the
next run to be at the θ which minimizes the expected value of the
‘improvement’

λ(`θ) :=
{
`θ `θ < `best

`best `θ ≥ `best

as proposed in Osborne et al. (2009).

I Some algebra shows that

E{λ(Lθ)} = `best + (m(θ)− `best)Φ(`best)− v(θ)φ(`best),

where Lθ is the unknown value of `θ, Φ and φ are the Gaussian
distribution function and density function, evaluated with m(θ) and
v(θ).

15 / 21



Bayesian optimization
I Let m and v be the current expectation and variance functions of

the GP emulator of ` := −2 log Lprf
I ; should be smooth-ish functions

of θ.

I Let `best be the best (smallest) value found so far. We choose the
next run to be at the θ which minimizes the expected value of the
‘improvement’

λ(`θ) :=
{
`θ `θ < `best

`best `θ ≥ `best

as proposed in Osborne et al. (2009).

I Some algebra shows that

E{λ(Lθ)} = `best + (m(θ)− `best)Φ(`best)− v(θ)φ(`best),

where Lθ is the unknown value of `θ, Φ and φ are the Gaussian
distribution function and density function, evaluated with m(θ) and
v(θ).

15 / 21



Bayesian optimization
I Let m and v be the current expectation and variance functions of

the GP emulator of ` := −2 log Lprf
I ; should be smooth-ish functions

of θ.

I Let `best be the best (smallest) value found so far. We choose the
next run to be at the θ which minimizes the expected value of the
‘improvement’

λ(`θ) :=
{
`θ `θ < `best

`best `θ ≥ `best

as proposed in Osborne et al. (2009).

I Some algebra shows that

E{λ(Lθ)} = `best + (m(θ)− `best)Φ(`best)− v(θ)φ(`best),

where Lθ is the unknown value of `θ, Φ and φ are the Gaussian
distribution function and density function, evaluated with m(θ) and
v(θ).

15 / 21



Bayesian optimization (cont)
Simple adaptive search:

More details

16 / 21



Bayesian optimization (cont)
Simple adaptive search:

More details

16 / 21



Bayesian optimization (cont)
Simple adaptive search:

More details

16 / 21



Bayesian optimization (cont)
Simple adaptive search:

More details

16 / 21



Bayesian optimization (cont)
Simple adaptive search:

More details

16 / 21



Bayesian optimization (cont)
Simple adaptive search:

More details

16 / 21



Bayesian optimization (cont)
Simple adaptive search:

More details

16 / 21



Bayesian optimization (cont)
Simple adaptive search:

More details

16 / 21



Bayesian optimization (cont)
Simple adaptive search:

More details

16 / 21



Bayesian optimization (cont)
Simple adaptive search:

More details

16 / 21



Bayesian optimization (cont)
Simple adaptive search:

More details

16 / 21



Bayesian optimization (cont)
Simple adaptive search:

More details

16 / 21



Bayesian optimization (cont)
Simple adaptive search:

More details

16 / 21



Bayesian optimization (cont)
Simple adaptive search:

More details

16 / 21



Bayesian optimization (cont)
Simple adaptive search:

More details

16 / 21



Bayesian optimization (cont)
Simple adaptive search:

More details

16 / 21



Bayesian optimization (cont)
Simple adaptive search:

More details

16 / 21



Bayesian optimization (cont)
Simple adaptive search:

More details

16 / 21



Bayesian optimization (cont)
Simple adaptive search:

More details

16 / 21



Bayesian optimization (cont)
Simple adaptive search:

More details

16 / 21



Bayesian optimization (cont)
Simple adaptive search:

More details

16 / 21



Bayesian optimization (cont)
Simple adaptive search:

More details

16 / 21



Bayesian optimization (cont)
Simple adaptive search:

More details

16 / 21



Bayesian optimization (cont)
Simple adaptive search:

More details

16 / 21



Bayesian optimization (cont)
Simple adaptive search:

More details

16 / 21



Bayesian optimization (cont)
Simple adaptive search:

More details

16 / 21



Bayesian optimization (cont)
Simple adaptive search:

More details

16 / 21



Bayesian optimization (cont)
Simple adaptive search:

More details

16 / 21



Bayesian optimization (cont)
Simple adaptive search:

More details

16 / 21



Results
I use the RobustGaSP emulator (Gu et al., 2018) with linear and
quadratic trend (centred), a 96-point grid for S+ (half a million points),
and optim(method = "L-BFGS-B") for the quasi-Newton method.

17 / 21



Results
I use the RobustGaSP emulator (Gu et al., 2018) with linear and
quadratic trend (centred), a 96-point grid for S+ (half a million points),
and optim(method = "L-BFGS-B") for the quasi-Newton method.

17 / 21



Second phase of runs
Original continues with Downhill Simplex. Thin & prof switches to
Bayesian optimization.

18 / 21



Second phase of runs
Original continues with Downhill Simplex. Thin & prof switches to
Bayesian optimization.

18 / 21



Second phase of runs
Original continues with Downhill Simplex. Thin & prof switches to
Bayesian optimization.

18 / 21



Second phase of runs
Original continues with Downhill Simplex. Thin & prof switches to
Bayesian optimization.

18 / 21



Second phase of runs
Original continues with Downhill Simplex. Thin & prof switches to
Bayesian optimization.

18 / 21



Second phase of runs
Original continues with Downhill Simplex. Thin & prof switches to
Bayesian optimization.

18 / 21



Second phase of runs
Original continues with Downhill Simplex. Thin & prof switches to
Bayesian optimization.

18 / 21



Second phase of runs
Original continues with Downhill Simplex. Thin & prof switches to
Bayesian optimization.

18 / 21



Second phase of runs
Original continues with Downhill Simplex. Thin & prof switches to
Bayesian optimization.

18 / 21



Second phase of runs
Original continues with Downhill Simplex. Thin & prof switches to
Bayesian optimization.

18 / 21



Second phase of runs
Original continues with Downhill Simplex. Thin & prof switches to
Bayesian optimization.

18 / 21



Second phase of runs
Original continues with Downhill Simplex. Thin & prof switches to
Bayesian optimization.

18 / 21



Second phase of runs
Original continues with Downhill Simplex. Thin & prof switches to
Bayesian optimization.

18 / 21



Second phase of runs
Original continues with Downhill Simplex. Thin & prof switches to
Bayesian optimization.

18 / 21



Second phase of runs
Original continues with Downhill Simplex. Thin & prof switches to
Bayesian optimization.

18 / 21



Second phase of runs
Original continues with Downhill Simplex. Thin & prof switches to
Bayesian optimization.

18 / 21



Second phase of runs
Original continues with Downhill Simplex. Thin & prof switches to
Bayesian optimization.

18 / 21



Second phase of runs
Original continues with Downhill Simplex. Thin & prof switches to
Bayesian optimization.

18 / 21



Second phase of runs
Original continues with Downhill Simplex. Thin & prof switches to
Bayesian optimization.

18 / 21



Second phase of runs
Original continues with Downhill Simplex. Thin & prof switches to
Bayesian optimization.

18 / 21



Second phase of runs
Original continues with Downhill Simplex. Thin & prof switches to
Bayesian optimization.

18 / 21



Second phase of runs
Original continues with Downhill Simplex. Thin & prof switches to
Bayesian optimization.

18 / 21



Second phase of runs
Original continues with Downhill Simplex. Thin & prof switches to
Bayesian optimization.

18 / 21



Second phase of runs
Original continues with Downhill Simplex. Thin & prof switches to
Bayesian optimization.

18 / 21



Second phase of runs
Original continues with Downhill Simplex. Thin & prof switches to
Bayesian optimization.

18 / 21



Second phase of runs
Original continues with Downhill Simplex. Thin & prof switches to
Bayesian optimization.

18 / 21



Second phase of runs
Original continues with Downhill Simplex. Thin & prof switches to
Bayesian optimization.

18 / 21



Second phase of runs
Original continues with Downhill Simplex. Thin & prof switches to
Bayesian optimization.

18 / 21



Second phase of runs
Original continues with Downhill Simplex. Thin & prof switches to
Bayesian optimization.

18 / 21



Second phase of runs
Original continues with Downhill Simplex. Thin & prof switches to
Bayesian optimization.

18 / 21



Second phase of runs
Original continues with Downhill Simplex. Thin & prof switches to
Bayesian optimization.

18 / 21



Second phase of runs
Original continues with Downhill Simplex. Thin & prof switches to
Bayesian optimization.

18 / 21



A gratifying result
The optimized thin & prof model typically performs better than
the optimized original model, even according to the original model
log-likelihood (α plugged in).

19 / 21



Extensions

Other structural outputs; e.g., spatial
Exactly the same approach: thin and profile.

Two or more time-series
Need to choose one of:

1. Same α and κ for both/all time-series?
2. Different α, same κ?
3. Same α, different κ? (this one seems odd)
4. Different α, different κ?

Prediction
As well as θ∗, need to carry information about α and κ through
into the prediction: possibly just plug-in. We get pointwise
approximate 95% confidence intervals for the predicted time-series
under new forcing.

20 / 21



Summary
1. We recognize the limitations of the simulator by including an

offset and a discrepancy. Not recognizing this results in a
log-likelihood function which is lumpy.

2. By thinning the observations we can profile out the offset and
the discrepancy variance, and the resulting likelihood function
is smooth-ish.

3. Downhill Simplex optimization then works fairly well, and
generates a set of candidate points that – we hope – straddle
the global optimum.

4. We switch to Bayesian optimization to finish the job
efficiently, emulating the log-likelihood with a Gaussian
Process, and using adaptive search.

5. While there are no guarantees, we hope this approach
produces a better estimate of the best input, for the same
number of simulator runs.

21 / 21



Summary
1. We recognize the limitations of the simulator by including an

offset and a discrepancy. Not recognizing this results in a
log-likelihood function which is lumpy.

2. By thinning the observations we can profile out the offset and
the discrepancy variance, and the resulting likelihood function
is smooth-ish.

3. Downhill Simplex optimization then works fairly well, and
generates a set of candidate points that – we hope – straddle
the global optimum.

4. We switch to Bayesian optimization to finish the job
efficiently, emulating the log-likelihood with a Gaussian
Process, and using adaptive search.

5. While there are no guarantees, we hope this approach
produces a better estimate of the best input, for the same
number of simulator runs.

21 / 21



Summary
1. We recognize the limitations of the simulator by including an

offset and a discrepancy. Not recognizing this results in a
log-likelihood function which is lumpy.

2. By thinning the observations we can profile out the offset and
the discrepancy variance, and the resulting likelihood function
is smooth-ish.

3. Downhill Simplex optimization then works fairly well, and
generates a set of candidate points that – we hope – straddle
the global optimum.

4. We switch to Bayesian optimization to finish the job
efficiently, emulating the log-likelihood with a Gaussian
Process, and using adaptive search.

5. While there are no guarantees, we hope this approach
produces a better estimate of the best input, for the same
number of simulator runs.

21 / 21



Summary
1. We recognize the limitations of the simulator by including an

offset and a discrepancy. Not recognizing this results in a
log-likelihood function which is lumpy.

2. By thinning the observations we can profile out the offset and
the discrepancy variance, and the resulting likelihood function
is smooth-ish.

3. Downhill Simplex optimization then works fairly well, and
generates a set of candidate points that – we hope – straddle
the global optimum.

4. We switch to Bayesian optimization to finish the job
efficiently, emulating the log-likelihood with a Gaussian
Process, and using adaptive search.

5. While there are no guarantees, we hope this approach
produces a better estimate of the best input, for the same
number of simulator runs.

21 / 21



Summary
1. We recognize the limitations of the simulator by including an

offset and a discrepancy. Not recognizing this results in a
log-likelihood function which is lumpy.

2. By thinning the observations we can profile out the offset and
the discrepancy variance, and the resulting likelihood function
is smooth-ish.

3. Downhill Simplex optimization then works fairly well, and
generates a set of candidate points that – we hope – straddle
the global optimum.

4. We switch to Bayesian optimization to finish the job
efficiently, emulating the log-likelihood with a Gaussian
Process, and using adaptive search.

5. While there are no guarantees, we hope this approach
produces a better estimate of the best input, for the same
number of simulator runs.

21 / 21



T H E E N D

Time for questions and discussion.

1 / 6



References

Goldstein, M. and Rougier, J. C. (2004). Probabilistic formulations for transferring inferences from mathematical
models to physical systems. SIAM Journal on Scientific Computing, 26(2):467–487.

Goldstein, M. and Rougier, J. C. (2009). Reified Bayesian modelling and inference for physical systems. Journal of
Statistical Planning and Inference, 139:1221–1239. With discussion, pp. 1243–1256.

Gu, M., Wang, X., and Berger, J. O. (2018). Robust Gaussian stochastic process emulation. Annals of Statistics,
46(6A):3038–3066.

Osborne, M. A., Garnett, R., and Roberts, S. J. (2009). Gaussian processes for global optimization. 3rd
International Conference on Learning and Intelligent Optimization (LION3), pages 1–15. Available at
http://www.robots.ox.ac.uk/˜mosb/public/pdf/1419/Osborne%20et%20al.%20-%202009%20-%
20Gaussian%20processes%20for%20global%20optimization.pdf.

Rougier, J. C. (2007). Probabilistic inference for future climate using an ensemble of climate model evaluations.
Climatic Change, 81:247–264.

Rougier, J. C. (2013). ‘Intractable and unsolved’: Some thoughts on statistical data assimilation with uncertain
static parameters. Phil. Trans. R. Soc. A, 371:20120297.

Rougier, J. C. and Goldstein, M. (2014). Climate simulators and climate projections. Annual Review of Statistics
and Its Application, 1:103–123.

2 / 6

http://www.robots.ox.ac.uk/~mosb/public/pdf/1419/Osborne%20et%20al.%20-%202009%20-%20Gaussian%20processes%20for%20global%20optimization.pdf
http://www.robots.ox.ac.uk/~mosb/public/pdf/1419/Osborne%20et%20al.%20-%202009%20-%20Gaussian%20processes%20for%20global%20optimization.pdf


The ‘best input’ model
See Goldstein and Rougier (2004, 2009), Rougier (2007), Rougier and
Goldstein (2014). This is the ubiquitous model for linking simulator runs,
the system, and observables.
I There is a ‘best’ value of the parameters, θ∗, such that

Y ⊥⊥ θ∗ | f (θ∗), or, as a DAG,

θ∗ f (θ∗) // Y

where denotes a deterministic edge.
If we knew θ∗, we’d run the simulator just once to predict Y ,
no matter what the value of θ∗ happened to be.

I Also ubiquitous is to add on a simple error structure for the
observables

Y1 // Z1

θ∗ f (θ∗) // Y

Yn // Zn

Return

3 / 6



Can we do better? (cont)
I We can profile out α directly

LI(θ, κ) := max
α∈[−αmax,αmax]

LI(θ, α, κ) = LI

(
θ, α̃(θ, κ), κ

)
where

α̂(θ, κ) :=
∑
i∈I

wi
(
zobs

i − fi (θ)
)
, wi := (κ2 + σ2

i )−1∑
j(κ2 + σ2

j )−1

α̃(θ, κ) := −αmax ∨ α̂(θ, κ) ∧ αmax.

I Then we can profile out κ using a 1D numerical optimization,

LI(θ) := max
κ∈[0,κmax]

LI(θ, α̃(θ, κ), κ).

I Computing LI(θ) only requires one run of the simulator, plus a
quick numerical optimization; i.e., its cost is comparable to
computing the original L(θ).

4 / 6



Can we do better? (cont)
I The bounds on α and κ in the profile likelihoods are not just

for show. Profile likelihood is a notoriously tricky approach for
estimating variances, and we want to keep α and κ fairly close
to their default values of 0 and 0 in order to stop the profile
running off to a statistical but not plausible solution.

I have been using

αmax = κmax = 2 median{σ1, . . . , σn}.

I In summary, we have (at least) two approaches:

1. Original model, which is just the scaled sum of squared
deviations over all outputs, i.e. no discrepancy.

2. Thin & prof model, where the outputs have been thinned, and
the discrepancy parameters have been profiled out.

Return

5 / 6



Bayesian optimization (cont)
A myopic adaptive approach (simple, room for improvement):

0a. Find the bounding box of all inputs so far, B.

0b. Expand by 10% from the centroid to give B+ (don’t
overshoot the parameter limits).

0c. Fill B+ with a grid to give S+.

1. Build a GP emulator of ` using all runs so far.

2. Evaluate E{λ(Lθ)} at every point in S+.

3. Improve the best point on S+ using a quasi-Newton method,
staying inside B+, to give θnew.

4. Run the simulator at θnew and compute the profile likelihood
`θnew .

5. If θnew is outside B, go back to 0, otherwise go back to 1.
Return

6 / 6


	Appendix
	References


